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• Detecting GWs offered a profound confirmation  
of general relativity 

• Using GW observations to test GR to increasing 
precision, we hope to obtain clues of new physics, 
and ultimately prove a more general theory 

[LSC 2016]



Testing GR with GW observations: a manifesto

• Consistency: a useful sanity check, but hard to interpret statistically. P values are 
possible with much work. But would we ever believe an inconsistent result?
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GW150914 tests of “consistency”: partial waveforms (1)
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GW150914 tests of “consistency”: partial waveforms (1)

Inspiral vs merger–ringdown consistency
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answers question: if we compute the preferred 
binary parameters from two nonoverlapping sections 
of the signal, are the resulting estimates “consistent”?

90% credible



single quasi-normal mode

GW150914 tests of “consistency”: partial waveforms (2)
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single quasi-normal mode

GW150914 tests of “consistency”: partial waveforms (2)
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answers question: if we estimate QNM parameter 
directly and compare them with values deduced  
from the preferred binary parameters, are the 
resulting estimates “consistent”?

90% credible



GW150914 test of “consistency”: full-waveform residual

SNR in coherent burst analysis 
of data residual after subtracting 
best-fit GW150914 waveform

SNRres � 7.3 � FF � 0.96SNR2
res =

1 � FF2

FF2 SNR2
det

Fitting Factor: parameter-maximized  
waveform overlap

(for violations not absorbed 
by physical parameters)
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SNR in coherent burst analysis 
of data residual after subtracting 
best-fit GW150914 waveform

SNRres � 7.3 � FF � 0.96SNR2
res =

1 � FF2

FF2 SNR2
det

Fitting Factor: parameter-maximized  
waveform overlap

(for violations not absorbed 
by physical parameters)

an actual null-hypothesis test (with P-value 0.3), 
which implies that GR prediction is verified to 4%; 
i.e., no GR violations above 4% of waveform



Testing GR with GW observations: a manifesto

• Consistency: useful sanity checks, but hard to interpret statistically. P values are 
possible with much work. But would we ever believe an inconsistent result? 

• Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass) 
are useful proxies for increasing resolving power, but again hard to interpret. 
Apparent violations may focus our search for new physics. 



GW150914 parametric test of GW propagation: graviton mass

mg < 1.2x10–22 eV/c2
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where M = (⌅3/5G�4/5)�3/5m, and b is the coe⇧cient of the dipole term, given by b =
(5/48)(⌅�1G4/3)⇤S2, where ⌅, G, S are given by Equations (94), and ⇤ = 1/(2 + ⇧BD). Double
neutron star systems are not promising because the small range of masses available near 1.4 M⇥
results in suppression of dipole radiation by symmetry. For black holes, s = 0.5 identically, con-
sequently double black hole systems turn out to be observationally identical in the two theories.
Thus mixed systems involving a neutron star and a black hole are preferred. However, a num-
ber of analyses of the capabilities of both ground-based and space-based (LISA) observatories
have shown that observing waves from neutron-star–black-hole inspirals is not likely to bound
scalar-tensor gravity at a level competitive with the Cassini bound or with future solar-system
improvements [283, 161, 236, 292, 27, 28].

6.4 Speed of gravitational waves

According to GR, in the limit in which the wavelength of gravitational waves is small compared
to the radius of curvature of the background spacetime, the waves propagate along null geodesics
of the background spacetime, i.e. they have the same speed c as light (in this section, we do not
set c = 1). In other theories, the speed could di⇥er from c because of coupling of gravitation to
“background” gravitational fields. For example, in the Rosen bimetric theory with a flat back-
ground metric �, gravitational waves follow null geodesics of �, while light follows null geodesics
of g (TEGP 10.1 [281]).

Another way in which the speed of gravitational waves could di⇥er from c is if gravitation were
propagated by a massive field (a massive graviton), in which case vg would be given by, in a local
inertial frame,
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where mg and E are the graviton rest mass and energy, respectively.
The simplest attempt to incorporate a massive graviton into general relativity in a ghost-free

manner su⇥ers from the so-called van Dam–Veltman–Zakharov (vDVZ) discontinuity [263, 299].
Because of the 3 additional helicity states available to the massive spin-2 graviton, the limit of
small graviton mass does not coincide with pure GR, and the predicted perihelion advance, for
example, violates experiment. A model theory by Visser [265] attempts to circumvent the vDVZ
problem by introducing a non-dynamical flat-background metric. This theory is truly continuous
with GR in the limit of vanishing graviton mass; on the other hand, its observational implications
have been only partially explored. Braneworld scenarios predict a tower or a continuum of massive
gravitons, and may avoid the vDVZ discontinuity, although the full details are still a work in
progress [91, 66].

The most obvious way to test this is to compare the arrival times of a gravitational wave and
an electromagnetic wave from the same event, e.g., a supernova. For a source at a distance D, the
resulting value of the di⇥erence 1� vg/c is
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where �t ⇤ �ta � (1 + Z)�te is the “time di⇥erence”, where �ta and �te are the di⇥erences in
arrival time and emission time of the two signals, respectively, and Z is the redshift of the source.
In many cases, �te is unknown, so that the best one can do is employ an upper bound on �te
based on observation or modelling. The result will then be a bound on 1� vg/c.

For a massive graviton, if the frequency of the gravitational waves is such that hf ⇧ mgc2,
where h is Planck’s constant, then vg/c ⌅ 1 � 1

2 (c/⇥gf)2, where ⇥g = h/mgc is the graviton

Living Reviews in Relativity
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GW150914 test of generation and binary dynamics:  
	 frequency-domain PN coefficients
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GW150914 test of generation and binary dynamics:  
	 frequency-domain PN coefficients
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answers question: what are the preferred values 
of individual waveform coefficients in a set of  
hypothetical theories in which each in turn is free?

fractional 
corrections!



For comparison: pulsar-timing tests of GR concern  
physical parameters, but also have weak interpretations

PSR J0737-3039 
[Kram

er 2016]

cumulative shift 
of periastron time

24 I. H. Stairs

Parameter Value
Orbital period Pb (d) 0.322997462727(5)
Projected semi-major axis x (s) 2.341774(1)
Eccentricity e 0.6171338(4)
Longitude of periastron ⇥ (deg) 226.57518(4)
Epoch of periastron T0 (MJD) 46443.99588317(3)

Advance of periastron ⇥̇ (deg yr�1) 4.226607(7)
Gravitational redshift � (ms) 4.294(1)
Orbital period derivative (Ṗb)obs (10�12) �2.4211(14)

Table 2: Orbital parameters for PSR B1913+16 in the DD framework, taken from [144].

Figure 6: The parabola indicates the predicted accumulated shift in the time of periastron for
PSR B1913+16, caused by the decay of the orbit. The measured values of the epoch of periastron
are indicated by the data points. (From [144], courtesy Joel Weisberg.)
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Testing General Relativity with Pulsar Timing 23

4 Tests of GR – Strong-Field Gravity

The best-known uses of pulsars for testing the predictions of gravitational theories are those in
which the predicted strong-field e�ects are compared directly against observations. As essentially
point-like objects in strong gravitational fields, neutron stars in binary systems provide extraor-
dinarily clean tests of these predictions. This section will cover the relation between the “post-
Keplerian” timing parameters and strong-field e�ects, and then discuss the three binary systems
that yield complementary high-precision tests.

4.1 Post-Keplerian timing parameters

In any given theory of gravity, the post-Keplerian (PK) parameters can be written as functions of
the pulsar and companion star masses and the Keplerian parameters. As the two stellar masses
are the only unknowns in the description of the orbit, it follows that measurement of any two
PK parameters will yield the two masses, and that measurement of three or more PK parameters
will over-determine the problem and allow for self-consistency checks. It is this test for internal
consistency among the PK parameters that forms the basis of the classic tests of strong-field
gravity. It should be noted that the basic Keplerian orbital parameters are well-measured and can
e�ectively be treated as constants here.

In general relativity, the equations describing the PK parameters in terms of the stellar masses
are (see [33, 133, 43]):
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where s ⇥ sin i, M = m1+m2 and T⇥ ⇥ GM⇥/c3 = 4.925490947 µs. Other theories of gravity, such
as those with one or more scalar parameters in addition to a tensor component, will have somewhat
di�erent mass dependencies for these parameters. Some specific examples will be discussed in
Section 4.4 below.

4.2 The original system: PSR B1913+16

The prototypical double-neutron-star binary, PSR B1913+16, was discovered at the Arecibo Ob-
servatory [96] in 1974 [62]. Over nearly 30 years of timing, its system parameters have shown a
remarkable agreement with the predictions of GR, and in 1993 Hulse and Taylor received the Nobel
Prize in Physics for its discovery [61, 131]. In the highly eccentric 7.75-hour orbit, the two neutron
stars are separated by only 3.3 light-seconds and have velocities up to 400 km/s. This provides an
ideal laboratory for investigating strong-field gravity.

For PSR B1913+16, three PK parameters are well measured: the combined gravitational red-
shift and time dilation parameter �, the advance of periastron ⌅̇, and the derivative of the orbital
period, Ṗb. The orbital parameters for this pulsar, measured in the theory-independent “DD”
system, are listed in Table 2 [133, 144].
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Testing GR with GW observations: a manifesto

• Consistency: useful sanity checks, but hard to interpret statistically. P values are 
possible with much work. But would we ever believe an inconsistent result? 

• Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass) 
are useful proxies for increasing resolving power, but again hard to interpret. 
Apparent violations may focus our search for new physics. 

• Alternative theories: new physics will be established by model comparison of GR 
with fully predictive alternative theories. It is a problem to establish Bayesian priors 
for alternative gravity, and for alternative-gravity parameters.  

same as detection other measurements, particle physics, astroparticles
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answers question: is there evidence for 
coherent, chirp-like quadrupolar radiation  
vs coherent, chirp-like purely scalar radiation?
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Testing GR with GW observations: a manifesto

• Consistency: useful sanity checks, hard to interpret statistically. P values are 
possible with much work. But would we ever believe an inconsistent result? 

• Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass) 
are useful proxies for increasing resolving power, but again hard to interpret. 
Apparent violations may focus our search for new physics. 

• Alternative theories: new physics will be established by model comparison of GR 
with fully predictive alternative theories. It is a problem to establish Bayesian priors 
for alternative gravity, and for alternative-gravity parameters. 

• Size of effects: detection SNR determines the magnitude of detectable waveform 
anomalies. 1% LIGO, up to 10–5 for LISA and future ground-based detectors. 



How well can we hope to do? [MV, PRD 86, 2012]
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• For a fixed false-alarm rate, we ask what SNR is needed to detect AG with 
50% probability as a function of fitting factor FF, using the Bayesian odds 
ratio as “detection” statistic.
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Apparent violations may focus our search for new physics. 

• Alternative theories: new physics will be established by model comparison of GR 
with fully predictive alternative theories. It is a problem to establish Bayesian priors 
for alternative gravity, and for alternative-gravity parameters. 

• Size of effects: detection SNR determines the magnitude of detectable waveform 
anomalies: 1% LIGO, up to 10–5 for LISA and future ground-based detectors. 

• Systematics: beyond statistical-significance arguments, we will need a solid chain 
of evidence before we claim GR is violated.
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Testing GR with GW observations: recommendations

• Consistency: useful sanity checks, hard to interpret statistically. P values are 
possible with much work. But would we ever believe an inconsistent result? 

• Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass) 
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• Alternative theories: new physics will be established by model comparison of GR 
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• Size of effects: detection SNR determines the magnitude of detectable waveform 
anomalies: 1% LIGO, up to 10–5 for LISA and future ground-based detectors. 

• Systematics: beyond statistical-significance arguments, we will need a solid chain 
of evidence before we claim GR is violated.
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